The study aims at translating recent advances in microscale characterization techniques into clinical practice to improve current diagnostic tools by the knowledge of ECM composition, proteotype, and micromechanical properties of each individual patient biopsy. Using clean room methods and FIB technology on bone for high throughput production of micropillars and automated experimental protocols allows massive parallel scanning. Bone strength of the femoral neck is determined by multiscale experimental and computational approaches for patients who underwent total hip arthroplasty. It will be assessed by data mining approaches if knowledge of proteotype and microscale information combined with clinical data can help to estimate fracture strength at higher accuracy.